// ** Start of PerfectMatch *******************************
// Name: PerfectMatch by Kuhn_Munkras O(n^3)
// Description: w is the adjacency matrix, nx,ny are the size of x and y,
// lx, ly are the lables of x and y, fx[i], fy[i] is used for marking
// whether the i-th node is visited, matx[x] means x match matx[x],
// maty[y] means y match maty[y], actually, matx[x] is useless,
// all the arrays are start at 1
int nx,ny,w[MAXN][MAXN],lx[MAXN],ly[MAXN];
int fx[MAXN],fy[MAXN],matx[MAXN],maty[MAXN];
int path(int u)
{
int v;
fx[u]=1;
for(v=1;v<=ny;v++)
if((lx[u]+ly[v]==w[u][v])&&(fy[v]<0)) {
fy[v]=1;
if((maty[v]<0)||(path(maty[v]))) {
matx[u]=v;
maty[v]=u;
return(1);
} // end of if((maty[v]...
} // end of if((lx[u]...
return(0);
} // end of int path()
int PerfectMatch()
{
int ret=0,i,j,k,p;
memset(ly,0,sizeof(ly));
for(i=1;i<=nx;i++) {
lx[i]=-INF;
for(j=1;j<=ny;j++)
if(w[i][j]>lx[i])
lx[i]=w[i][j];
} // end of for(i...
memset(matx,-1,sizeof(matx));
memset(maty,-1,sizeof(maty));
for(i=1;i<=nx;i++) {
memset(fx,-1,sizeof(fx));
memset(fy,-1,sizeof(fy));
if(!path(i)) {
i--;
p=INF;
for(k=1;k<=nx;k++)
if(fx[k]>0)
for(j=1;j<=ny;j++)
if((fy[j]<0)&&(lx[k]+ly[j]-w[k][j]<p))
p=lx[k]+ly[j]-w[k][j];
for(j=1;j<=ny;j++) ly[j]+=(fy[j]<0?0:p);
for(k=1;k<=nx;k++) lx[k]-=(fx[k]<0?0:p);
} // end of if(!path(i))
} // end of for(i...
for(i=1;i<=ny;i++) ret+=w[maty[i]][i];
return ret;
} // end of int PerfectMatch()
// ** End of PerfectMatch *********************************
标程
最大匹配(匈牙利算法)
// ** Start of MaximumMatch *******************************
// Name: MaximumMatch by Hungray O(n^3)
// Description: mat is the adjacency matrix, nx,ny are the size of x and y,
// fy is used for marking whether the k-th node is visited, matx[x] means x
// match matx[x], maty[y] means y match maty[y], actually, matx[x] is useless,
// all the arrays start at 1
int nx,ny,mat[MAXN][MAXN],fy[MAXN],matx[MAXN],maty[MAXN];
int path(int u)
{
int v;
for(v=1;v<=ny;v++)
if((mat[u][v])&&(fy[v]<0)) {
fy[v]=1;
if((maty[v]<0)||(path(maty[v]))) {
matx[u]=v;
maty[v]=u;
return(1);
} // end of if((maty[v]...
} // end of if((mat[u][v]...
return(0);
} // end of int path()
int MaximumMatch()
{
int i,ret=0;
memset(matx,-1,sizeof(matx));
memset(maty,-1,sizeof(maty));
for(i=1;i<=nx;i++)
if(matx[i]<0) {
memset(fy,-1,sizeof(fy));
ret+=path(i);
} // end of if(matx[i]...
return(ret);
} // end of int MaximumMatch()
// ** End of MaximumMatch *********************************
KMP
直接抄的武大李春葆老师的数据结构上的改进KMP
// return the first matching string2 in the string1
#include <stdio.h>
#include <string.h>
#define MaxSize 1000
typedef struct
{
char ch[MaxSize];
int len;
} SqString;
void GetNextval(SqString t,int nextval[])
{
int j=0,k=-1;
nextval[0]=-1;
while(j<t.len)
{
if((k==-1)||(t.ch[j]==t.ch[k]))
{
j++;
k++;
if(t.ch[j]!=t.ch[k]) nextval[j]=k;
else nextval[j]=nextval[k];
}
else k=nextval[k];
}
}
int KMP(SqString s,SqString t)
{
int nextval[MaxSize],i=0,j=0,v;
GetNextval(t,nextval);
while((i<s.len)&&(j<t.len))
{
if((j==-1)||(s.ch[i]==t.ch[j]))
{
i++;
j++;
}
else j=nextval[j];
}
if(j>=t.len) v=i-t.len;
else v=-1;
return(v);
}
int main()
{
// freopen("kmp.in","r",stdin);
// freopen("kmp.out","w",stdout);
SqString str1,str2;
gets(str1.ch);
str1.len=strlen(str1.ch);
gets(str2.ch);
str2.len=strlen(str2.ch);
printf("%dn",KMP(str1,str2));
return(0);
}
RMQ
从whummd的blog上copy来的,加了点自己的修改,正在看,集训加油
// StandCode for RMQ, return the smallest number in array s[i..j]
#include <iostream>
#include <cmath>
using namespace std;
#define MAXN 1000000
int f2[30];
int s[MAXN];
int r[MAXN][22];
void make_f2(int n)
{
int i;
for(i=0;i<=n;i++)
f2[i]=1<<i;
return;
}
void make_RMQ(int n)
{
int i,j;
for(i=1;i<=n;i++)
r[i][0]=s[i];
for(j=1;j<=log(n)/log(2);j++)
for(i=1;i<=n;i++)
r[i][j]=min(r[i][j-1],r[i+f2[j-1]][j-1]);
return;
}
int RMQ(int i,int j)
{
int k=int(log(j-i+1)/log(2));
return(min(r[i][k],r[j-f2[k]+1][k]));
}
int main()
{
freopen("rmp.in","r",stdin);
freopen("rmp.out","w",stdout);
int n,i,start,end;
scanf("%d",&n);
for(i=1;i<=n;i++)
scanf("%d",&s[i]);
make_f2(20);
make_RMQ(n);
while(scanf("%d%d",&start,&end)!=EOF)
printf("%dn",RMQ(start,end));
return 0;
}